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Abstract The paper discusses several areas of research
conducted by Vyacheslav Tanaev (1940–2002), mainly on
scheduling. His contribution to parametric decomposition of
optimization problems is also addressed. For each area we
focus on the most important results obtained by V.S. Tanaev
and trace how his research has been further advanced.

Keywords Scheduling · Sequencing · Permutation ·
Priority-generating function · Symmetric function · Mixed
graph · Parametric decomposition

1 Introduction

Vyacheslav S. Tanaev was born on March 28, 1940, in
Akulovo, Tver region, Russian Federation. He obtained his
high education from the Crimea Pedagogical Institute in

V.S. Gordon · M.Y. Kovalyov (�) · G.M. Levin ·
Y.M. Shafransky · Y.N. Sotskov · A.V. Tuzikov
United Institute of Informatics Problems, National Academy
of Sciences of Belarus, Surganova 6, 220012 Minsk, Belarus
e-mail: my_kovalyov@newman.bas-net.by

G.M. Levin
e-mail: levin@newman.bas-net.by

Y.M. Shafransky
e-mail: shafr@newman.bas-net.by

Y.N. Sotskov
e-mail: sotskov@newman.bas-net.by

A.V. Tuzikov
e-mail: tuzikov@newman.bas-net.by

V.A. Strusevich
School of Computing and Mathematical Sciences, University
of Greenwich, London, UK
e-mail: V.Strusevich@gre.ac.uk

1962, and received his Candidate of Sciences (PhD Equiva-
lent) degree for his work on scheduling from the Institute of
Mathematics of the National Academy of Sciences of Be-
larus (NASB) in 1965. The degree of Doctor of Sciences
(Habilitated Doctor) was awarded to V.S. Tanaev after a suc-
cessful defense of the thesis on parametric decomposition of
optimization problems at the Computer Center of the Acad-
emy of Sciences of the USSR, Moscow, in 1977. In 1963
Vyacheslav Tanaev started to work at the NASB, sequen-
tially taking positions of a PhD student, a researcher and a
head of a laboratory. In 1987 he became the director of the
Institute of Engineering Cybernetics (United Institute of In-
formatics Problems of NASB since 2002), and in 2000 was
elected a full member of NASB, which is the highest sci-
entific rank in the states of the former Soviet Union. The
scientific heritage of Vyacheslav Tanaev includes more than
130 research publications among which there are ten mono-
graphs. His scientific interests included scheduling theory,
discrete and continuous optimization, computer aided de-
sign; he coordinated research in geo-information systems,
development of super-computers, application of informat-
ics to medicine. He supervised 18 Candidates of Sciences
among which 6 became Doctors of Sciences. The authors
of this review are former students and colleagues of Vyach-
eslav Tanaev, and are greatly indebted to him for showing
the right way of their scientific career.

It is well-known that Scheduling Theory as a sepa-
rate branch of Operational Research started in the middle
of 1950s. During its first decade, Scheduling Theory was
mainly developed in the USA, see Potts and Strusevich
(2009) for a review. A time lag of almost ten years had
elapsed before the first papers on scheduling appeared in
other countries. Presumably, Vyacheslav Tanaev is the au-
thor of the first papers in Russian with “scheduling” in the
title (Tanaev 1964a, 1964b, 1964c), and his early research
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stimulated the study in this area in the Soviet Union and the
countries of Eastern Europe. Later, when strong scheduling
groups appeared in all major scientific centers of the USSR
(Minsk, Moscow, Kiev, Novosibirsk, etc.), till his last days
he remained the main authority in the area. Several gener-
ations of Russian-speaking researches benefited from get-
ting familiar with major results on scheduling by studying
the monographs (Tanaev and Shkurba 1975; Tanaev et al.
1984a, 1989a, 1989b); the two latter books appeared in Eng-
lish in 1994.

In this paper, we have selected several topics of research
initiated by V.S. Tanaev and traced how his results have been
further extended and developed.

It is assumed that the reader is familiar with the schedul-
ing terminology and the three-field classification system for
scheduling problems, as introduced in Graham et al. (1979).

2 From simple priorities to scheduling with precedence
constraints

In the early days of scheduling research, most of the stud-
ies focused on combinatorial analysis of the relevant mod-
els. It was found that quite often a mathematical model of
a scheduling situation could be formulated in terms of op-
timizing a function over a set of permutations of jobs. The
first scheduling results proved in the middle of 1950s for the
two-machine flow shop problem to minimize the makespan
(Johnson 1954), for the single machine problem to minimize
the maximum lateness (Jackson 1955), for the single ma-
chine problem to minimize the sum of weighted completion
time (Smith 1956) were obtained by the so-called pairwise
interchange argument that could be traced back to the fa-
mous book (Hardy et al. 1934). As a result, the mentioned
problems admit a solution by a so-called priority rule: each
job is assigned a value (that depends only on the job’s pa-
rameters), called a priority, and an optimal sequence is ob-
tained by sorting the jobs according to these priorities. As a
proof technique, the pairwise interchange argument uses the
following reasoning. Suppose that there exists an optimal se-
quence in which some two adjacent jobs do not follow the
rule under consideration. Then a proof is provided that if the
order of these jobs is reversed, the objective function value
does not get worse, thus ordering the jobs according to the
rule is a sufficient condition for optimality of the obtained
sequence.

In this section, we discuss how the technique of mini-
mizing functions over permutations of independent elements
(jobs) using simple job priorities has been advanced to mini-
mization of functions of a certain type over partially ordered
sets using extended priorities assigned to sequences of jobs.
As an illustration, throughout this section we use the func-
tion similar to that studied in Smith (1956) and its general-
izations.

Given a set N = {1,2, . . . , n} of jobs, let πr = (j1, j2,

. . . , jr ) denote a permutation of r jobs selected from N ,
where 0 ≤ r ≤ n. Here r is the length of permutation πr ;
the case of r = 0 corresponds to a dummy permutation.
Denote by P̂n the set of all full permutations, i.e., per-
mutations of length n. The early scheduling results men-
tioned in the opening paragraph of this section can be
seen as related to minimizing a function F(π) over the
set P̂n. The pairwise interchange argument is applicable
if a job j ∈ N can be associated with a value ω(j) such
that for any two jobs j and k the inequality ω(j) ≥ ω(k)

implies that there exists an optimal permutation in which
job j is scheduled before job k. An alternative inter-
pretation: if π = (j1, j2, . . . , jk, jk+1, . . . , jn) and π ′ =
(j1, j2, . . . , jk+1, jk, . . . , jn) are two full permutations that
differ only by the transposition of the jobs sequenced in
the kth and (k + 1)th positions and ω(jk) ≥ ω(jk+1) then
F(π) ≤ F(π ′). In what follows, we call the function ω(j)

that satisfies the outlined property the 1-priority function.
For example, for the problem studied in Smith (1956),

the objective function can be written as

F(π) =
n∑

k=1

wjk
Cjk

=
n∑

k=1

wjk

k∑

i=1

pji
, (1)

where pjk
, Cjk

and wjk
denote the processing time, the com-

pletion time and the weight of job jk sequenced in position
k, for 1 ≤ k ≤ n. It is shown in Smith (1956) that we can
select the 1-priority ω(j) = wj/pj and sort the jobs in non-
increasing order of these values.

In one of his early papers Tanaev introduces a generaliza-
tion of the function of the form (1). He defines

F(π) =
n∑

k=1

ϕjk

(
k∑

i=1

pji

)
, (2)

where ϕj (t) is a function of job completion times (Tanaev
1965) and shows that for ϕj (t) = ϕ(t), where ϕ(t) is an ar-
bitrary non-decreasing function, and for ϕj (t) = αj exp(γ t),
where γ �= 0, the function of the form (2) admits 1-priorities
ω(j) = −pj and ω(j) = αj exp(γpj )/(exp(γpj ) − 1), re-
spectively. A similar result was independently derived by
Rothkopf (1966). Several years later, Kladov and Livshitz
(1968) obtained the result that can be interpreted as fol-
lows. Function (2) defined in terms of non-decreasing and
sufficiently smooth functions ϕj admits a 1-priority if and
only if (i) ϕj (t) = αj t + βj or (ii) ϕj (t) = αj exp(γ t) + βj

or (iii) ϕj (t) = ϕ(t) + βj , where ϕ(t) is an arbitrary non-
decreasing function.

All results mentioned above are related to minimizing
certain objective functions over the set P̂n of all full permu-
tations, i.e., the jobs are independent and any job may take
any position in a permutation that defines a schedule. How-
ever, it is often found in practice that not all permutations of
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jobs are permitted due to various technological, marketing
or assembly requirements. This can be modeled by impos-
ing precedence constraints on set N to describe allowable
sequences of jobs, according to which only permutations of
a certain set P ⊂ P̂n are feasible.

Formally, the precedence constraints are defined by a bi-
nary relation →. We write i → j and say that job i precedes
job j if in any feasible schedule job i must be completed
before job j starts its processing. In the case of multi-stage
systems, such as the flow shop, it is required that job i must
be completed on any machine before job j starts on that ma-
chine. The set of constraints is usually given by an acyclic
directed graph G, in which the set of vertices corresponds to
the set of jobs N and there is an arc from vertex i to vertex
j if and only if i → j. It is convenient to represent the con-
straints in the form of a reduction graph, obtained from G

by removing all transitive arcs. A permutation of jobs is fea-
sible if no pair of jobs violates the precedence constraints.
Thus, set N together with the defined precedence relation
→ should be seen as a partially ordered set, or a poset. Let
Pn(G) denote the set of all full feasible permutations of a
partially ordered set of n elements.

V.S. Tanaev was among the first who understood the
importance of scheduling problems under precedence con-
straints. In 1967 he wrote an elegant one page long paper
(Tanaev 1967) on enumeration of feasible permutations of a
poset.

In the monograph (Conway et al. 1967) the single ma-
chine problem to minimize the sum of the job completion
times under chain-like precedence constraints was consid-
ered and the authors came up with an idea of considering
not individual jobs, but sequences of jobs called compos-
ite jobs later. This idea has been independently extended to
minimizing a function of the form (2) under tree-like prece-
dence constraints in Horn (1972) for ϕj (t) = αj t + βj and
in Gordon and Tanaev (1973a) for ϕj (t) = αj exp(γ t)+βj .

It is beyond the scope of this paper to give a detailed his-
torical account of scheduling under precedence constraints.
Among those who made essential contributions by general-
izing simple job priorities in the 1970s are D.L. Adolphson,
V.S. Gordon, E.L. Lawler, T. Kurisu, C.L. Monma, Y.M.
Shafransky, J.B. Sidney and many others. Briefly, the main
results obtained in this area can be summarized as follows:
For certain objective functions an optimal permutation in
set Pn(G) can be found in polynomial time if the reduction
graph G is series-parallel. The objective functions that al-
low this are now known as priority-generating. This concept
was first introduced in Shafransky (1978a) and provision-
ally reported in Gordon and Shafransky (1977); the theory
of minimization of such functions was further developed in
Y.M. Shafransky’s PhD thesis and in Gordon and Shafran-
sky (1978a, 1978b, 1978c). A good review of the related
issues is given in Tanaev et al. (1989a); see also Monma and

Sidney (1979) who independently used similar concepts,
e.g., the adjacent sequence interchange property. Normally,
the running time of the resulting algorithms of minimizing
a priority-generating function over set Pn(G) is O(n logn),
provided that a series-parallel graph G is given by its de-
composition tree. A systematic exposition of the theory of
minimization of priority-generating functions over series-
parallel and more general precedence constraints is included
as a chapter into the monograph (Tanaev et al. 1984a).

The formal definition of a priority-generating function
and the priority function is given below. Let us be given a
set P ⊂ P̂n of feasible permutations (in the case of a poset,
e.g., P = Pn(G)). Denote by Q[P ] the set of all substrings
of permutations from P , i.e., π0 ∈ Q[P ] if there exist par-
tial permutations π1 and π2 such that (π1,π

0,π2) ∈ P . Let
παβ = (π ′, α,β,π ′′) and πβα = (π ′, β,α,π ′′) be two fea-
sible permutations that differ only in the order of the sub-
strings α and β. For a function F(π), suppose that there
exists a function ω(π) defined over the set Q[P ] such that
for any two feasible permutations παβ and πβα the inequal-
ity ω(α) ≥ ω(β) implies that F(παβ) ≤ F(πβα). In this
case, function F is called a priority-generating function over
set P , while function ω is called its priority function. For a
(partial) permutation π , the value of ω(π) is called the pri-
ority of π .

A result presented in Zinder (1976) can be interpreted as
follows: function (2) is priority-generating over P̂n if and
only if (i) ϕj (t) = αj t + βj or (ii) ϕj (t) = αj exp(γ t) + βj .
In the case (i) the priority function is

ω(π) =
∑

αj

/∑
pj ,

while in the case (ii) it is

ω(π) =
(

F(π) −
∑

βj

)/(
exp

(
γ

∑
pj

)
− 1

)
.

Here and below we assume that all summations are taken
with respect to the jobs included into a partial permuta-
tion π . These and many other priority-generating functions
and their priority functions can be found in Tanaev et al.
(1984a).

Apart from the function (2), another important function
in scheduling is

F(π) = max
1≤u≤n

{
u∑

k=1

αjk
+ βju

}
, (3)

closely related to the minimization of makespan in the two-
machine flow shop (Johnson 1954). This function in the
form (3) is introduced in Tanaev (1964c) and can serve
as a unified model for most versions of the two-machine
flow shop problem that involve various additional time lags
(setup times, transportation delays, etc.). When minimized
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over set P̂n of all full permutations, this function admits a 1-
priority ω(j) = sgn(−αj )(W − min{αj + βj ,βj }), where
sgn(x) = 1,0,−1 for x > 0, x = 0 and x < 0, respec-
tively, and W is a sufficiently large number, greater than
maxj∈N min{αj + βj ,βj }; see Tanaev (1964c), Tanaev and
Shkurba (1975). This function is also priority-generating,
and its priority for a feasible (partial) sequence π is given
by

ω(π) = sgn

(
−

∑
αj

)(
W − F(π) + max

{∑
αj ,0

})
.

In this form this priority function is derived in Shafransky
(1978b), see also Tanaev et al. (1984a).

Applications of the theory of minimization of priority-
generating functions to multicriteria sequencing and sched-
uling are presented in Tuzikov and Shafransky (1983),
Kovalyov and Tuzikov (1994), Janiak et al. (2001), to
group technology scheduling are detailed in the monograph
(Tanaev et al. 1998); to scheduling problems with due date
assignments are considered in the papers of Gordon and
Strusevich (1999) and Gordon et al. (2005); to scheduling
problems with the start-time dependent and position depen-
dent processing times are studied in Gordon et al. (2008).

We conclude this subsection by mentioning several re-
sults on scheduling problems with precedence constraints
that are not necessarily solvable by priority-generation.
Problems of this type have also been in the focus of attention
of V.S. Tanaev and his team.

An O(n2)-time algorithm is presented in Gordon and
Tanaev (1983) for problem 1|rj ,prec,pmtn|max{fj (Cj )},
subject to the condition that the value of each function
fj (Cj ) can be calculated in a constant time. The number
of preemptions in an optimal schedule obtained by the al-
gorithm is at most n − 1. Some special cases are presented
where the algorithm gives an optimal non-preemptive sched-
ule (for example, when pj = d , j = 1, . . . , n, where d is the
greatest common devisor of r1, . . . , rn). Notice that a similar
approach to solving the problem is independently proposed
in Baker et al. (1983), and a special case of the maximum
lateness minimization is similarly handled in Blazewicz
(1976), see also Blazewicz et al. (2007).

A quite general model for scheduling on m unrelated par-
allel machines with a linearly ordered set of jobs is studied
in Tanaev (1979a). Here the machines may have the ready
times before which they are not available, and the sequence
of jobs assigned to a machine must respect the linear order.
Each job j ∈ N is associated with a penalty fj (Cj ), where
fj is a non-decreasing function of the completion time Cj .
There is another cost component F(V1, . . . , Vm), where F

is a non-decreasing function of machine completion times
V1, . . . , Vm. Additionally, each machine Mi has a cost func-
tion of its usage, i.e., to process a job j on machine Mi costs
cij . The objective is to minimize the total cost as the sum

of three components:
∑

j∈N fj (Cj ), F(V1, . . . , Vm) and the
total cost of using the machines. An O(nm)-time dynamic
programming algorithm is suggested based on partition of
the (ordered) set of jobs into subsequences.

A fairly complete complexity classification of shop
scheduling problems under precedence constraints is given
in Strusevich (1997a, 1997b), while scheduling problems
with machine-dependent precedence constraints are studied
in Shafransky and Strusevich (1998), Gladky et al. (2004).

3 Mixed graphs and multigraphs in scheduling theory

One of the most general and most difficult to handle schedul-
ing models is the job shop, traditionally denoted by J‖F ,
where F is a (regular) objective function to be minimized.
Here the jobs have to be processed sequentially on a number
of machines, each job has its individual processing route, in
which some of the machines can be missing, some can be
repeated several times (revisited). Even in the case of three
machines and three jobs problem J3|n = 3|F is binary NP-
hard for all traditional objective functions F , as shown in
Sotskov and Shakhlevich (1995).

In the middle of the 1960s, several researchers came to
an idea of modeling the job shop problem in terms of either
obtaining a circuit-free digraph from a so-called disjunctive
graph (Roy and Sussmann 1964) or, equivalently, finding
a circuit-free orientation of the edges of a weighted mixed
graph. The latter model was introduced by V.S. Tanaev and
has remained more typical in the East European literature.

V.S. Tanaev initiated study of an extremal problem on
mixed graphs as a model of a general shop, i.e., a multi-stage
scheduling system that generalizes the traditional job shop,
open shop and mixed shop. A general shop problem, which
we here denote by G‖F , can be represented by means of a
weighted mixed graph G = (Q,C,D). Here Q is a set of
vertices (operations), a non-negative weight (the sum of op-
eration durations, setup time and transfer time, if any) being
assigned to each vertex i ∈ Q. The set C of arcs represents
the given precedence constraints. The set D of edges repre-
sents the competition between operations, which either have
to be processed on the same machine or belong to the same
job processed without a fixed machine route like in an open
shop. A pair of non-negative weights is assigned to each
edge. Using the mixed graph approach, one can consider
problem G‖F as an extremal problem on a weighted mixed
graph (Matyushkov and Tanaev 1967, 1968; Tanaev 1975,
1988): To find the orientation of each edge of set D such that
the obtained digraph G′ = (Q,C∪D′,∅) has no circuits and
the objective function F achieves its minimum value for the
semi-active schedule defined by digraph G′. Let Π(G) de-
note the set of all circuit-free digraphs G′ = (Q,C ∪ D′,∅)

generated by a mixed graph G. The modelling of problem
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G‖F in terms of mixed graphs is based on the one-to-one
correspondence between set Π(G) and the set of all semi-
active schedules feasible for problem G‖F .

It is shown in Lambin and Tanaev (1970) that for
a given mixed graph G and two digraphs G1 ∈ Π(G)

and Gk ∈ Π(G) one can produce a sequence of digraphs
G1,G2, . . . ,Gk , in which one circuit-free digraph is trans-
lated into another, so that each next digraph of this sequence
is obtained from the previous one by changing the orienta-
tion of exactly one arc. Algorithms for generating set Π(G),
for computing the exact value of |Π(G)|, and for finding
lower bounds and upper bounds on |Π(G)| are presented
in Sotskov and Tanaev (1974, 1976a). The above results are
included in the monograph (Tanaev et al. 1989b) and the
textbook (Sotskov et al. 1994).

For the problem of minimizing the makespan, i.e., for
F = Cmax, an optimal digraph G′ that defines an optimal
schedule has the minimum critical path. The algorithms
and software for generating set Π(G) were developed in
Matyushkov and Tanaev (1967, 1968), with an emphasize
on priority rules for selecting heuristic solutions of problem
G‖Cmax. The information about the successful decisions,
which led to good solutions, was accumulated and used for
constructing more complex, adaptive priority rules. Such an
adaptive approach was further developed in Shakhlevich et
al. (1996), Kruger et al. (1998) in order to produce, for a
class of similar problems G‖Cmax, a class-specific heuristic
rule which would be successful for solving problems in this
class.

Based on the concept of a stability radius introduced
in Leont’ev (1975) for the traveling salesman problem,
V.S. Tanaev has encouraged research on stability analysis
of the optimal digraph G′ = (Q,C ∪ D′,∅). Here the main
question is to find the range of changes in operation du-
rations that leave digraph G′ optimal. A closed ball in the
space of operation durations (with respect to the Chebyshev
metric) is called a stability ball of G′ if digraph G′ remains
optimal for any choice of operation durations from this ball.
The maximum value of the radius of a stability ball is called
the stability radius of G′. In Sotskov and Alyushkevich
(1988), Alyushkevich and Sotskov (1989), Sotskov (1991),
Sotskov et al. (1997, 1998b) the formulas for calculating the
stability radius of the optimal digraph that defines an optimal
semi-active schedule for problems G‖Cmax and G‖∑

Ci

are obtained; the necessary and sufficient conditions for the
stability radius to be equal to zero are given, and the class of
optimal schedules with an infinitely large stability radius is
discovered. The surveys of the results on the stability radius
are given in Sotskov et al. (1995, 1998a), Emelichev et al.
(2002); the relevant material is included into the monograph
(Tanaev et al. 1989b) and the textbook (Sotskov et al. 1994).

In the monograph (Tanaev et al. 1989b), a resource-
constrained project scheduling problem (RCPSP) is pre-

sented as an extremal problem on a weighted mixed multi-
graph G = (Q,C,D) without a restriction that the weights
of arcs and edges must be non-negative. The schedule for
RCPSP is defined by a multigraph G

′ = (Q,C ∪ D
′
,∅)

with no circuit of a positive weight obtained from G due
to orientation of each edge. In Sotskov and Tanaev (1989),
it is proved that testing the existence of digraph G

′
is a

strongly NP-hard problem even if there exists only one neg-
ative weight, and polynomially solvable cases of the latter
problem are classified.

In the monograph (Tanaev et al. 1989b), optimization of
a processing system is presented using a weighted mixed
multigraph G = (Q,C,D). The optimization problem P in-
cludes (a) choosing machines from given sets of machines
of different types, (b) assigning the given set of operations
to the chosen machines, and (c) sequencing the operations
in accordance with the assignment. In Sotskov (1997), Sot-
skov et al. (2002), it is shown that steps (a), (b) and (c) may
be carried out simultaneously due to special transformations
of the edges of set D in the mixed multigraph G. The nec-
essary and sufficient conditions for a digraph generated by
a mixed multigraph G to define a feasible solution for prob-
lem P are proved.

It should be noted that most of the papers written and
co-authored by V.S. Tanaev before 1990 were published in
Russian and therefore were almost inaccessible to scientists
in the West. For example, V.S. Tanaev initiated the study
of mixed graph coloring, i.e., assignment of positive inte-
gers (colors) to vertices of a mixed graph so that, if two
vertices are linked by an edge then their colors have to be
different, and if two vertices are linked by an arc, then the
color of the start-vertex has to be no greater than the color
of the end-vertex. There is a more than 20 years long gap
between the first paper on mixed graph coloring published
in Russian (Sotskov and Tanaev 1976b) and the first pa-
per on this topic that appeared in English (Hansen et al.
1997). For a mixed graph, bounds on the chromatic num-
ber, i.e., on the smallest integer k for which a mixed graph
admits a coloring in k colors) are presented in Ries and de
Werra (2008). The complexity status of finding the chro-
matic number for a mixed graph is studied in Ries (2007).
In particular, it is proved that the problem is NP-hard for
planar bipartite mixed graphs and for bipartite mixed graphs
with a degree at most 3. Mixed graph coloring can be in-
terpreted as a scheduling problem G|pij = 1|Cmax with unit
processing times (Sotskov et al. 2001, 2002). In Sotskov and
Tanaev (1976b), Sotskov et al. (2002) the chromatic poly-
nomial of a mixed graph is studied. Such a polynomial may
be used for calculating the number of feasible schedules. In
Sotskov et al. (2001) and Al-Anzi et al. (2006), the prob-
lems J |pij = 1|Cmax and J |pij = 1|∑Ci are considered in
terms of mixed graph coloring; the complexity results are
proved for special cases and branch-and-bound algorithms
for mixed graph coloring are developed and tested.
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4 Functions in scheduling

V.S. Tanaev was deeply interested in the mathematical back-
ground of scheduling results, in particular in determining
classes of objective functions that will guarantee certain
properties of an optimal schedule and/or of a solution al-
gorithm. We have already discussed how Tanaev’s results
initiated the developments of the theory of minimization of
priority-generating functions; see Sect. 2. In this section, we
discuss further examples of classes of functions studied or
introduced by Tanaev.

4.1 Non-preemptive schedules and e-quasi-concave
functions

One of the early results of scheduling theory obtained in
McNaughton (1959) establishes that for the single machine
problem 1|pmtn|∑fj (Cj ) to minimize the sum of non-
decreasing penalty functions fj , there exists an optimal non-
preemptive schedule. According to the study conducted by
Gordon and Tanaev in the early 1970s, this is in fact valid
for any non-decreasing objective function of the comple-
tion times of the jobs, i.e., for an arbitrary function F(x) =
F(x1, . . . , xn), where x is an n-vector with xj = Cj that
does not decrease in each of its arguments. Moreover, if the
jobs have different release dates rj , then for the resulting
problem 1|rj ,pmtn|F there exists an optimal schedule in
which preemptions can occur only at the release dates. See
Sect. 1 of Chap. 4 of Tanaev and Shkurba (1975) and Sect. 1
of Chap. 2 of Tanaev et al. (1984a) for details, proofs and a
historical account.

To describe the class of problems on parallel identical
machines for which there exists an optimal non-preemptive
schedule, Tanaev introduces the notion of an e-quasi-
concave objective function. Recall that a function F(x) is
quasi-concave if for any n-vectors x(1) and x(2) and an ar-
bitrary λ, 0 ≤ λ ≤ 1, the inequality

F
(
λx(1) + (1 − λ)x(2)

) ≥ min
{
F

(
x(1)

)
,F

(
x(2)

)}
(4)

holds. Let E be the set of all n-vectors e with the com-
ponents 0,1 and −1. A function F(x) is called e-quasi-
concave, if for any n-vectors x(1) and e ∈ E and any num-
bers α and λ, α > 0, 0 ≤ λ ≤ 1, inequality (4) holds for
x(2) = x(1) + αe; see Sect. 1 of Chap. 2 of the monograph
(Tanaev et al. 1984a). Notice that another equivalent def-
inition of an e-quasi-concave function is given in Tanaev
(1973). By definition, a concave function is quasi-concave,
and a quasi-concave function is e-quasi-concave, but not
vice versa. It is proved in Tanaev (1973) (see also Sect. 1 of
Chap. 4 of Tanaev and Shkurba 1975 and Sect. 1 of Chap. 2
of Tanaev et al. 1984a) that for problem P |pmtn|F with
a non-decreasing and e-quasi-concave objective function
there exists an optimal non-preemptive schedule. Moreover,

instances of problem P |pmtn|F are presented for which a
non-preemptive optimal schedule does not exist if either the
objective function is not e-quasi-concave or the jobs are par-
tially ordered.

In Gordon and Tanaev (1973b), conditions on the ob-
jective function (more general than the property of be-
ing e-quasi-concave) are established such that for problem
P |rj ,pmtn|F there exists an optimal schedule in which pre-
emptions occur only at the release dates. Besides, problem
P |rj ,pmtn,Cj ≤ dj |· of finding a deadline-feasible pre-
emptive schedule on parallel identical machines is consid-
ered in Gordon and Tanaev (1973c); see also Chap. 2 in
Tanaev et al. (1984a). The necessary and sufficient condi-
tions of the existence of such a schedule are formulated by
reducing this scheduling problem to a maximum flow prob-
lem. Notice that a similar approach has been independently
developed in Horn (1974).

For the single machine scheduling problem of minimiz-
ing the weighted number of late jobs, it is shown in Tanaev
and Gordon (1983) that there exists a non-preemptive op-
timal schedule. provided that the release dates and the due
dates are similarly ordered, i.e., ri < rj ⇒ di ≤ dj for all
i, j ∈ N . The conditions under which an optimal sequence
of jobs can be found in O(n2) time are given. These con-
ditions are valid, in particular, for the unweighted case. If
the release dates, the due dates, the weights and the process-
ing times are agreeable, i.e., the jobs can be numbered as
either (i) rj ≤ rj+1, dj ≤ dj+1,pj ≤ pj+1,wj ≥ wj+1 or
(ii) rj ≤ rj+1, dj ≤ dj+1,pj ≤ rj+1 − rj ,wj ≥ wj+1, then
an optimal non-preemptive schedule exists and can be found
in O(n logn) time.

4.2 Optimization of recursive functions over a set of
permutations

Many applied problems, including those of scheduling the-
ory, can be formulated in terms of optimization of certain
functions over subsets of permutations of a finite set of el-
ements (jobs). In the 1960s and 1970s V.S. Tanaev together
with G.M. Levin identified and studied one of fairly general
classes of such problems, namely, problems of optimiza-
tion of monotone-recursive functions over normalized sets
of permutations.

This direction of research started with considering a sin-
gle machine scheduling problem to minimize the makespan
under arbitrary precedence constraints, provided that the
completion time of a job sequenced in the kth position de-
pends on the completion time of the job in the previous po-
sition k − 1 and additionally on the jobs (not necessarily on
their completion times only) sequenced in several preceding
positions. The processing time of a job depends both on this
job and its position in the sequence. In Tanaev and Levin
(1967) a solution approach based on dynamic programming
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(DP) and branch-and-bound (BandB) is outlined. A similar
model is considered in Levin and Tanaev (1968), however
here the completion time of a job in the kth position addi-
tionally depends on the jobs that are sequenced after that
position.

A more general situation is considered in Tanaev (1977a).
The problem is to minimize a function g(π) = F(π,n)

for a function F that is recursively defined over a set of
permutations of a partially ordered set of n elements by
the formula F(π, k) = Φ(F(π, k − 1), {σ }, jk), where π =
(j1, . . . , jn) is a full permutation, σ is a partial permutation
σ = (j1, . . . , jk−1) and {σ } represents the set of the elements
in σ . The conditions are established under which the prob-
lem can be solved by an efficient algorithm that combines
the DP and B&B ideas.

The next level of abstraction and generalization has led
to optimization of monotone-recursive functions over nor-
malized sets of permutations; see Levin and Tanaev (1970,
1978). The relevant concepts are presented and discussed
below.

Let P be a set of (partial) permutations of the form
πi = (j1, j2, . . . , j�i

) of the elements of a finite set N =
{1,2, . . . , n}. Define the set of ordered pairs R = {〈πi, k〉 |
πi ∈ P ,1 ≤ k ≤ �i}. The main problem under consideration
is to minimize the function g(πi) = f (〈πi, �i〉) which is re-
cursively defined over set P as

f
(〈πi, k〉) = Φ

(
f

(〈πi, k − 1〉), r(〈πi, k〉)),
k = 1, . . . , �i, (5)

where f (〈πi,0〉) = const, and r(〈πi, k〉) is a set defined be-
low.

Tanaev and Levin study the case that set R is partitioned
into non-empty mutually disjoint sets Rp , i.e., R = ∪ Rp;
and in turn, each of these sets Rp is also partitioned into
non-empty mutually disjoint sets rpq , i.e., Rp = ∪ rpq . Let
R(〈πi, k〉) (respectively, r(〈πi, k〉)) denote the set from the
partition {Rp} = {Rp|p = 1, . . .} (respectively, from the par-
tition {rpq} = {rpq |p = 1, . . . ;q = 1, . . .}) that contains the
element 〈πi, k〉. Non-strict order relations ⇒ and → can be
defined over the set {Rp} and over the set {rpq}, respectively,
which are coordinated by the condition: if rpq → ruv then
Rp ⇒ Ru. A binary operation γ is defined over set R in
such a way that γ (〈πi, ki〉, 〈πu, ku〉) = 〈π,ki〉, where

π =
{

(j1, . . . , jki
, jku+1, . . . , j�u), if ku �= lu,

(j1, . . . , jki
), otherwise.

A set P of permutations is called normalized (with re-
spect to the partitions {Rp} and {rpq}), if for any two
elements 〈πi, ki〉 ∈ R and 〈πu, ku〉 ∈ R the conditions
R(〈πi, ki〉) ⇒ R(〈πu, ku〉) and γ (〈πi, ki〉, 〈πu, ku〉) =
〈π,ki〉 imply that

(i) π ∈ P .
(ii) r(〈π,ki〉) → r(〈πi, ki〉) and r(〈π,ki − 1〉) →

r(〈πi, ki − 1〉) for ki > 1.
(iii) r(〈π,ku+1〉) → r(〈πu, ku+1〉), provided that ku < lu.

A function Φ(·, ·) in (5) is called monotone-recursive if
it is non-decreasing with respect to each of its arguments,
i.e., if a < b then Φ(a, r) ≤ Φ(b, r) for all r ∈ {rpq} and,
additionally, if r1 → r2 then Φ(c, r1) ≤ Φ(c, r2) for all c.

In Levin and Tanaev (1970, 1978) the properties of
the normalized sets of permutations are established. The
authors investigate the method of determining so-called
(s, t)-neighborhoods, which appears to be one of the most
popular ways of forming the partitions {Rp} and {rpq}
for practical problems. For the kth element in a permu-
tation π = (j1, j2, . . . , j�), its (s, t)-neighborhood is de-
fined as an ordered triple Qst (π, k) = 〈Q,σs, σt 〉, where
Q = {j1, j2, . . . , jk−s} is a set which is empty is k < s, while
σs , σt are permutations such that σs = (jmax{1,k−s+1}, . . . ,
jk−1, jk) and σt = (jk+1, jk+2, . . . , jmin{�,k+t}).

The following optimality criterion for the problem of
minimizing function g(π) has been established. For a set
R′ ⊆ R, define F(R′) = min{f (〈πi, k〉|〈πi, k〉 ∈ R′)}. Let
R be the set of all Rj ∈ {Rp} for which there exists Ri ∈
{Rp} such that Ri ⇒ Rj and F(Ri) ≤ F(Rj ). Then there
exists a permutation πi∗ ∈ P such that f (〈πi∗ , �i∗〉) =
min{g(π)|π ∈ P }, and additionally the relations R(〈πi∗ , k〉)
/∈ R and f (〈πi∗ , k〉) = F(R(〈πi∗ , k〉)) hold for all k =
1, . . . , �i∗ . This criterion leads to the following two-level
scheme of a solution procedure. At the lower level, the value
F(Rp) is determined for a fixed Rp , while at the higher
level, the value of F(Rp) is minimized over {Rp}. For the
higher level problem, the recurrent relations have been de-
rived that allow us to use the techniques typical for the meth-
ods of DP and of sequential analysis of variants (Mikhale-
vich 1965a, 1965b).

The results of these studies have been further extended
to optimization over so-called “weakly normalized” sets of
permutations (Levin 1980).

4.3 Scheduling with symmetric objective functions

A function F(x1, x2, . . . , xn) is called symmetric if it does
not depend on the order of the arguments, i.e., for any per-
mutation (j1, j2, . . . , jn) the equality F(x1, x2, . . . , xn) =
F(xj1 , xj2, . . . , xjn) holds.

In most scheduling problems, it is required to mini-
mize a regular function of the completion times of jobs,
i.e., F(C1,C2, . . . ,Cn) that is non-decreasing in any of
its arguments. Many objective functions used in schedul-
ing are symmetric. Examples of regular symmetric func-
tions that are popular in scheduling include the maximum
completion time (the makespan) Cmax = max{Cj |j ∈ N},
the total completion time

∑
j∈N Cj , the sum of squared
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completion times
∑

j∈N C2
j , the maximum tardiness

Tmax = max{max{Cj − d,0}|j ∈ N} and the total tardiness∑
j∈N Tj = ∑

j∈N max{Cj − d,0} with respect to a com-
mon due date d , and many more. The study initiated by
V.S. Tanaev and continued together with A.A. Gladky in the
1990s demonstrates that for numerous scheduling problems
polynomial-time algorithms known for minimizing a par-
ticular function can be extended to minimizing an arbitrary
regular symmetric function.

A problem of minimizing a generalized symmetric func-
tion Gsym is studied in Tanaev (1992). Here Gsym =
Gsym(f1, f2, . . . , fn) is a composite symmetric function and
fj is a penalty associated with job j ∈ N . Let X be a set of
feasible vectors (f1, f2, . . . , fn). A minimal element of the
set X is a vector (f 0

1 , . . . , f 0
n ) for which there exists no vec-

tor (f1, . . . , fn) ∈ X such that fik ≤ f 0
jk

, k = 1, . . . , n, and
at least one of these inequalities is strict. Here (i1, . . . , in)

and (j1, . . . , jn) are permutations such that fi1 ≤ · · · ≤ fin

and f 0
j1

≤ · · · ≤ f 0
jn

. If set X contains a unique minimal ele-
ment (accurate up to a permutation of its components), then
it delivers the minimum to any regular symmetric function
on X. Therefore, if for some scheduling problem there is an
algorithm, which detects this unique minimal element, then
the algorithm is applicable to the problem with any regular
symmetric objective function. Notice that the minimum of
an increasing symmetric function is always achieved at a
minimal element if it exists.

Set X which possesses a unique minimal element is
called minorant. Thus, the fact that the problem of mini-
mizing an increasing symmetric function on a minorant set
is solvable in polynomial time implies polynomial solvabil-
ity of the problem to minimize any other regular symmet-
ric function on this set. On the other hand, the NP-hardness
of minimizing a regular symmetric function on a minorant
set implies the NP-hardness of minimizing any increasing
symmetric function on this set (Tanaev 1992, 1993). Ex-
amples of symmetric and non-symmetric functions, as well
as examples of problems in which a unique minimal el-
ement exists and does not exist can be found in Tanaev
(1992).

For instance, Tanaev (1992) considers problem 1|pi <

pj ⇒ wi ≥ wj |∑wjUj with agreeable processing times
and weights of the jobs to minimize the weighted number
of late jobs; here Uj = 1 if job j is late, otherwise Uj = 0.
This problem is solvable in O(n logn) time as shown in
Gordon and Tanaev (1971). Since the set of feasible val-
ues (w1U1, . . . ,wnUn) is minorant in this problem, and
the function

∑
wjUj is symmetric and increasing on this

set, the algorithm in Gordon and Tanaev (1971) is optimal
for problem 1|pi < pj ⇒ wi ≥ wj |Gsym(w1U1, . . . ,wnUn)

with any symmetric regular function Gsym(w1U1, . . . ,

wnUn). Another example of this approach is problem
1‖Fsym(C1, . . . ,Cn). Since problem 1‖∑

Cj is solvable by

the Shortest Processing Time (SPT) rule as established in
Smith (1956), the set of feasible values (C1, . . . ,Cn) is mi-
norant in this problem, and

∑
Cj is an increasing symmetric

function, it follows that the SPT rule determines an opti-
mal solution for problem 1‖Fsym(C1, . . . ,Cn) with any reg-
ular symmetric objective function of job completion times.
Examples are Fsym = max{max{(Cj )

α − d,0}|j ∈ N} and
Fsym = ∑

j max{(Cj )
α − d,0} for α > 0.

The results from Tanaev (1992) are extended to the case
of non-zero job release dates rj with preemptions allowed in
Tanaev (1993). In particular, problem 1|rj ,pmtn|Fsym(C1,

. . . ,Cn) with an arbitrary regular symmetric function can
be solved in O(n logn) time by the algorithm described in
Baker (1974), developed for problem 1|rj ,pmtn|∑Cj to
minimize the sum of completion times.

A further extension of this approach to scheduling on
identical parallel machines is done in Tanaev and Gladky
(1994a, 1994b). Among the implications of the study
in Tanaev and Gladky (1994a) is the fact that problem
P 2|pj = 1, prec|Fsym(C1, . . . ,Cn) of scheduling unit-time
jobs on two parallel identical machines under arbitrary
precedence constraints to minimize an arbitrary regular
symmetric function can by solved in O(n2) time by the al-
gorithm presented in Coffman and Graham (1972), origi-
nally developed for problem P 2|pj = 1,prec|Cmax to min-
imize the makespan and applicable for minimizing

∑
Cj .

Similarly, Tanaev and Gladky (1994b) prove that the O(n)

time algorithm in Hu (1961), originally developed for prob-
lem P |pj = 1,out − tree|Cmax of scheduling unit-time jobs
on m parallel identical machines under tree-like prece-
dence constraints to minimize the makespan, solves prob-
lem P |pj = 1,out − tree|Fsym(C1, . . . ,Cn) to minimize an
arbitrary regular symmetric function.

The problem of scheduling unit-time jobs on uniform
parallel machines to minimize the makespan is studied in
Kovalyov and Shafransky (1998). Some jobs may require a
unit of an additional renewable resource during their exe-
cution, whose total amount is upper bounded at each time
instant. The proposed polynomial time algorithm is shown
to find the unique minimal element; thus, the algorithm can
be used for minimizing any regular symmetric function over
this set.

The open shop problem with unit-time jobs is considered
in Shakhlevich (2005), the algorithms for finding schedules
that minimize any regular symmetric convex function and
any regular symmetric concave function are presented.

Scheduling problems in which human resources have to
operate in a contaminated area are studied in Janiak and Ko-
valyov (2006), and for some problems of this range algo-
rithms for minimizing an arbitrary regular symmetric objec-
tive function are presented.
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5 Scheduling with transfer operators

The work of V.S. Tanaev in early the 1960s on scheduling
with transfer operators falls into several categories of mod-
ern scheduling theory, such as scheduling with transporta-
tion considerations or transportation/communication delays,
robotic flow shop scheduling, and cyclic scheduling; see,
e.g., Brucker et al. (2004), Dawande et al. (2005), Levner
et al. (2007) for recent reviews of the relevant areas.

The models studied in Tanaev (1964a, 1964b), Blokh and
Tanaev (1966), Tanaev and Shkurba (1975) are related to a
periodic flow shop with m machines in which either a finite
number or an infinite number of non-preemptive jobs that
belong to one or several families have to be scheduled. Jobs
of the same family are identical. They are transferred from
the previous machine to the next machine down the route
by an operator of unit capacity. There can be one, several
or an unlimited number of such operators. Their movements
from one machine to another can take a given time or can
be instantaneous. The machine setup times between any two
jobs either from the same family or from different families
can be given. A schedule is characterized by the job start
times on the machines and by the routes of the operators.
The objective is to maximize the system’s throughput, which
is the average number of jobs completed per time unit.

In the 1960s, computational complexity analysis was not
yet established and studies on the existence of problem solu-
tions attracted attention of mathematicians. In his first pub-
lications on scheduling with transfer operators, Tanaev con-
centrated on this latter issue. For the case of an infinite
number of jobs, he generalized the results in Suprunenko et
al. (1962), Aizenshtat (1963), which were obtained for so-
called primitive cyclic processes, and established the nec-
essary and sufficient conditions for the existence of feasi-
ble solutions for the scheduling problems with transfer op-
erators, and those for the existence of an optimal solution,
which is periodic. He used a concept of incompatible time
intervals for job transfer, which was later used for other
scheduling problems under the name forbidden intervals by
several authors, see Levner et al. (2007).

In Blokh and Tanaev (1966) a periodic schedule is proved
to be asymptotically optimal for the problem with a sin-
gle family and an infinite number of jobs. The authors fur-
ther reduced finding an optimal periodic schedule to find-
ing a circuit in a digraph with the maximum ratio of two
sums, where one sum is associated with arc weights and the
other sum with arc lengths. Similar results were obtained
in the theory of discrete control in Romanovskii (1964,
1967). As pointed out in Levner et al. (2007), these results
were independently rediscovered in different forms in the
1970s–2000s by many well-known mathematicians. Since
the 1960s, the problem of finding maximum or minimum
ratio circuit in a digraph has been very popular in combi-
natorial optimization. It has been studied, among others, in

Dantzig et al. (1967), Megiddo (1978), Karp (1978); Karp
and Orlin (1981), Young et al. (1991), Orlin and Ahuja
(1992).

If the number of families and the number of jobs are both
finite and the number of transfer operators is unlimited, the
original problem is reduced in Tanaev (1964b) to a problem,
which can now be classified as a Period(ic) Traveling Sales-
man Problem (PTSP) or Period(ic) Vehicle Routing Problem
(PVRP). In the latter problems, each city must be visited a
given number of times. Tanaev provides an Integer Linear
Programming formulation and develops an interesting solu-
tion approach, which is to convert solutions of an assign-
ment problem into the required solutions of PTSP by means
of introducing additional linear constraints. Active studies
of PTSP and PVRP began in the 1980s and still continue
to expand. Related information can be found in Christofides
and Beasley (1984), Laporte and Osman (1995).

Given the optimal job processing intervals in the case
of unlimited number of operators, the problem of minimiz-
ing the number of required transfer operators is reduced in
Blokh and Tanaev (1966) to the classical problem of de-
composing a poset into the minimum number of chains,
whose well-known properties were established in Dilworth
(1950), and a solution algorithm was suggested in Ford
and Fulkerson (1962). This type of reduction was later ap-
plied to the interval scheduling problems, in which there
are no operators but the jobs should be processed in their
given time intervals; see the surveys (Kolen et al. 2007;
Kovalyov et al. 2007).

6 Parametric decomposition of optimization problems

Apart from scheduling, another important direction of re-
search conducted by V.S. Tanaev is related to the devel-
opment of decomposition solution techniques for complex
optimization problems. In this section, we review major
achievements in this area.

Decomposition methods in mathematical programming
were originated in Dantzig and Wolfe (1960), Kornai and
Liptak (1965) who suggested two approaches to decompos-
ing linear programming problems: column generation and
constraint separation. Later on, approaches based on con-
straint relaxation, constraint fixing, generation and relax-
ation of constraints, variables aggregation, the use of the
Lagrangean function, and the use of a small parameter were
developed.

Since the early 1970s, V.S. Tanaev together with
G.M. Levin was developing a general theory of parametric
decomposition of optimization problems (Levin and Tanaev
1974a, 1974b, 1977). Notice that the term “parametric de-
composition” had been earlier coined in Ermoliev and Er-
molieva (1972). The core of the theory is the idea of parame-
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trization of an initial problem A by introducing into it addi-
tional parameters and constraints in such a way that for fixed
values of the parameters the obtained parametrized problem
B would be substantially easier to solve than the initial prob-
lem. A special case of parametrization is fragmentary pa-
rameterization, which requires substitution of certain frag-
ments of the objective function and those of constraints by
parameters. In particular, it is desirable that subproblem B ′
obtained from B by fixing the introduced parameters would
decompose into a collection of several simpler independent
subproblems of a smaller dimension. A two-level solution
scheme is used for solving the parameterized problem B:
at the lower level, subproblem B ′ with fixed values of the
parameters is solved, and at the upper level, a coordinating
subproblem B ′′ is solved with a purpose of determining the
optimal values of the parameters that define subproblem B ′.
A successive application of this technique leads to multilevel
decomposition of the original problem.

A general scheme of parametric decomposition has been
designed and sufficient conditions of its applicability have
been established. Under these conditions, the links between
the stationary domains and the local minima domains of the
objective functions of the original problem A and those of
the arising subproblems have been studied. Several reasons
have been identified, due to which the stationary domains
and the local minima domains of problem A generate sim-
ilar domains in a lower level subproblem B ′ obtained as a
result of decomposition. For a higher level coordinating sub-
problem B ′′, a classification of domains (stationary and local
minima) has been obtained with respect to their relations to
the analogous areas of the initial problem A. Several types
of such domains have been identified, with only one type
to be of essential impact on the complexity of solving sub-
problem B ′′. Each such domain (either stationary or local
minima) in subproblem B ′′ is generated by the correspond-
ing domain of problem A; thus, the number of such special
local minima domains in B ′′ is no more than in A, so that
subproblem B ′′ is no harder than the original problem.

The results of this study made the core of Tanaev’s thesis
for the Habilitated Doctor degree (1977), they are reported
in the monographs (Levin and Tanaev 1978; Tanaev 1987)
and reviewed in the survey (Verina et al. 1988).

Based on the previously obtained results, the enhanced
parametric decomposition theory has emerged that uses
parametrization as a common foundation for combined ap-
plication of decomposition along with the embedding of
the obtained subproblems into simpler and computationally
easier problems. This extension of parametric decomposi-
tion theory was successfully completed in the 1990s by V.S.
Tanaev together with G.M. Levin and L.F. Verina; see Verina
et al. (1995), Levin and Tanaev (1998, 2002).

Using the schemes of parametric decomposition tech-
niques, numerous decomposition methods for solving var-
ious problems of mathematical and discrete programming

have been constructed by V.S. Tanaev and his colleagues
(Verina 1985; Verina and Levin 1991; Guschinsky and Levin
1987, 1991; Guschinsky et al. 1991). These applications in-
clude also problems that arise in automated design, in par-
ticular in optimization of the structure and parameters of a
multi-positional production system (Levin and Tanaev 1978;
Dolgui et al. 2005, 2006a, 2006b; Guschinskaya et al. 2008),
as well as in optimization of parameters of advanced multi-
link transmissions (Levin et al. 2004; Guschinsky et al.
2006; Dolgui et al. 2007). Based on the obtained results, de-
cision support systems for designing the mentioned objects
have been developed (Dolgui et al. 2008a, 2008b). These
systems have been implemented at major relevant produc-
tion enterprises of Belarus: Minsk and Baranovichi transfer
line plants, Minsk tractor plant, concern AMKODOR.

7 Books and surveys

In this section, we review the books and surveys written or
co-authored by V.S. Tanaev on various aspects of schedul-
ing.

One of the major roles of V.S. Tanaev was that of a pro-
moter of scheduling research in the former Soviet Union.
He has co-authored several research monographs, including
the most influential (Tanaev and Shkurba 1975; Tanaev et al.
1984a, 1989a, 1989b), that were aimed at getting Russian-
speaking researchers and students to become familiar with
the most essential results in the area. A systematic and
structural approach, so characteristic for a scientific style of
V.S. Tanaev, makes these books useful even after many years
after their first publication.

It is worth mentioning that before the 1990s contacts be-
tween the researchers from the West and from the Eastern
Europe were limited. The papers published in the West be-
came known to the East European colleagues after a consid-
erable delay. Besides, in almost all areas of science, includ-
ing Operational Research and Scheduling in particular, only
a few libraries of the former Soviet Union, normally located
at major cities and scientific centers (Moscow, Leningrad,
Novosibirsk, Kiev), were able to buy foreign journals and
books. It was not uncommon that less than five copies of a
journal, even of a high international rank, were available in
the whole country. Thus, a secondary goal of the mentioned
monographs was to present the reader with the results pub-
lished in hardly accessible sources.

The monograph (Tanaev and Shkurba 1975) was pro-
duced by the main Soviet publisher of scientific literature
Nauka (“Science”), Moscow. Accidentally, the same year
the same publisher issued the Russian translation of the fa-
mous scheduling book (Conway et al. 1967). Thus, 1975
was indeed a very important year for scheduling in the So-
viet Union. Unlike the book (Conway et al. 1967), the mono-
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graph (Tanaev and Shkurba 1975) concentrates on deter-
ministic scheduling models. It describes several useful tech-
niques of combinatorial analysis earlier discussed in this pa-
per, including the pairwise interchange method (see Sect. 2),
modeling with mixed graphs (see Sect. 3) and optimiza-
tion of recursive functions over a set of permutations (see
Sect. 4.2). There are chapters on single machine models and
on those with identical parallel machines; in particular the
issues of the existence of non-preemptive schedules are ad-
dressed (see Sect. 4.1 above). Two chapters are devoted to
the flow shop models. For the two-machine case, a gener-
alization of the classical algorithm from Johnson (1954) is
shown to work in the presence of various time lags, not nec-
essarily positive. For the multi-machine case a branch-and-
bound algorithm is detailed. The job shop chapter discusses
a mixed graph representation and mathematical program-
ming formulations of the relevant models. A separate chap-
ter treats scheduling models with transfer operators, for both
finite and infinite numbers of operators (see Sect. 5 above).

The two books (Tanaev et al. 1984a, 1989a, 1989b),
also issued by Nauka, should be seen as a two-volume
monograph aimed at covering the most essential schedul-
ing results at the time; exactly in such a two-volume form
the books were translated into English in 1994. The years
elapsed since the publication of the previous book (Tanaev
and Shkurba 1975) were probably most important for form-
ing the modern shape of scheduling theory. That was the
time of the arrival of the theory of computational complex-
ity, the time of creating the famous three-field notation sys-
tem for scheduling models and of other developments cap-
tured in a series of influential surveys with the core team of
authors consisting of E.L. Lawler, J.K. Lenstra and A.H.G.
Rinnooy Kan; see the seminal and most quoted survey (Gra-
ham et al. 1979). There was a need to reflect those changes
and achievements in a systematic way, and in a manner suit-
able for a Russian-speaking reader.

The monograph (Tanaev et al. 1984a) gives a comprehen-
sive presentation of the results known at the time regarding
the single-stage scheduling systems, i.e., the systems with
a single machine and those with parallel machines (identi-
cal, uniform and unrelated). Unlike many other books on
scheduling, this monograph is not organized on the model-
after-model principle. Apart from an introductory chapter of
general combinatorial techniques, it contains a large chapter
on polynomial-time algorithms, a chapter that presents the
theory of minimization of priority-generating functions (see
Sect. 2 of this paper) and a chapter on the NP-hard schedul-
ing problems. In turn, the chapter on NP-hardness is split
into sections from the point of view of the method of proof:
one section shows how Partition problem can be used for
polynomial reduction, then 3-Partition, vertex cover, clique,
etc. Due to space restrictions, the book concentrates on the

aspects of scheduling that are mainly of academic inter-
est; the exact enumerative methods, as well as approxima-
tion and heuristic algorithms are not discussed in the main
body of the book. For the English version, additions and cor-
rections of the original text were performed, including an
added appendix on approximation algorithms in single-stage
scheduling.

The monograph (Tanaev et al. 1989b) treats the models of
multi-stage processing, including the flow shop, the job shop
and the open shop, and it is split into chapters according to
these models. A separate chapter describes the use of mixed
graphs and multigraphs for modeling and optimization of
complex processing systems (see Sect. 3 of this paper). As
in the previous book, the main stress is on the complexity
issues, and for each considered model an attempt is made
to provide a borderline between the versions that are poly-
nomially solvable and those which are NP-hard. Approxi-
mation algorithms and their worst-case analysis (an insuffi-
ciently developed area at the time of publication) are briefly
discussed. The mixed graph chapter presents branch-and-
bound algorithms for the relevant problems. Heuristic and
local search algorithms are not discussed in the main body
of the book. Several updates and corrections are performed
for the English edition.

All three books above have a common feature that V.S.
Tanaev saw necessary for a scientific monograph: the body
of each chapter is a smooth text split into sections and sub-
sections, and does not contain any references to the original
publications. Each chapter is accompanied by a section that
provides bibliographic notes on its content.

What makes the books useful sources even now, is their
extensive lists of references, in Russian and other languages,
mainly English. For example, the book (Tanaev et al. 1989b)
quotes 839 publications, and extra 111 references are added
for the English version of 1994.

An important side of V.S. Tanaev’s scientific activities
is related to pedagogy. He lectured at the Belarussian State
University, Minsk, took part in the final vivas for its under-
graduates (where he never missed an opportunity to recruit
an able student to join his research laboratory). He actively
participated in various educational programmes in Belarus.
V.S. Tanaev supervised numerous PhD students and under-
stood that the earlier a young researcher gets exposed to the
area of her or his future research, the higher the chances are
for eventual success.

Among the publications of V.S. Tanaev there is a rather
thin brochure (Tanaev 1988). “Scheduling theory”, it is writ-
ten to be understandable to an able high school student
and is meant to attract young people to scheduling. And,
who knows, may be some of the young readers will choose
scheduling as their future career?

Although scheduling theory was not a standard compul-
sory course at a Soviet University, at several places this
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and similar topics were taught as options or courses of spe-
cialization for senior undergraduates. With that in mind,
V.S. Tanaev co-authored a textbook (Sotskov et al. 1994).
Written not long after the completion of the monograph
(Tanaev et al. 1989b), the textbook was aimed at deliv-
ering major scheduling results in a friendly manner with
additional exercises varying from numerical examples to
proofs of different degrees of hardness. The book was rec-
ommended as a textbook for the students in Applied Mathe-
matics.

The last monograph on scheduling co-authored by Tanaev
is Tanaev et al. (1998). It is devoted to various group tech-
nology and batch scheduling models. To cope with the va-
riety of the models, the unified terminology and notation
system is developed. The problems are classified with re-
gard to the type of the processing system. A fairly complete
analysis of their computational complexity is provided, and
selected efficient solution methods are described. A consid-
erable part of the book demonstrates new applications of
priority-generating functions (see Sect. 2 of this paper) to
solving group technology scheduling problems under prece-
dence constrains.

Apart from the reviewed books, V.S. Tanaev has co-
authored several surveys on various aspects of scheduling.
The survey (Kovalyov et al. 1989) addresses approxima-
tion scheduling algorithms, and at the time of publication
was probably the most comprehensive review on the topic.
A good overview of the scheduling contributions of the
Minsk Group led by V.S. Tanaev is presented in Sotskov
and Tanaev (1994). A detailed survey on the stability is-
sues in scheduling (see Sect. 3) is contained in Sotskov et al.
(1998a). In Gordon and Tanaev (2001) the reader will find a
concise survey on the single machine scheduling problems
with due dates and deadlines.

Theoretical findings of V.S. Tanaev and his collabora-
tors resulted in software packages on timetabling (Barkan
and Tanaev 1970), multi-step optimization of monotone-
recursive functions (Tanaev et al. 1984b, 1986b, 1986c) and
scheduling (Tanaev et al. 1986a, 1987, 1989a, 1989b).

Edited by V.S. Tanaev, several books of collected articles
on algorithms and software for optimization problems were
published in 1970–90s years at the Institute of Engineering
Cybernetics of the Academy of Sciences of BSSR (Tanaev
1977b, 1979b, 1980, 1981, 1982, 1983, 1984, 1985, 1989,
1990, 1991).

As far other research interests of V.S. Tanaev are con-
cerned, the books (Levin and Tanaev 1978; Tanaev 1987)
and the survey (Verina et al. 1988) on parametric decom-
position of optimization problems have been discussed in
Sect. 6.

The book (Tanaev and Povarich 1974) addresses the is-
sues of application of so-called tables of usage to decision-
making in automated design. The properties of these tables

are studied, the methods of synthesis of the graphs-schemes
of selecting decisions by these tables are developed and im-
plemented. The software package is described that allows
generating computer programs of decision-makings based
on the graph-schemes.

8 Conclusion

The purpose of this paper is to review several areas of re-
search conducted by V.S. Tanaev and to demonstrate an im-
pact that he had on the development of scheduling theory
and optimization, especially in the countries of the former
Soviet Union. The authors are proud to be the members of
the Minsk Group created and led by V.S. Tanaev till his last
days, and for each of us an opportunity to work with him has
been one of the most important factors of shaping one as a
researcher.
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